【C++】二维矩阵运算代码

本文最后更新于:2023年9月4日 中午 11:41

C++ 二维矩阵运算代码

2023/09/04 by ShizuriYuki

该矩阵运算片段包含:

  • 矩阵加法
  • 矩阵减法
  • 矩阵乘法
  • 矩阵快速幂
  • 矩阵求行列式
  • 矩阵转置
  • 矩阵求逆(高斯消元法)
  • 矩阵求秩
  • 矩阵拼接
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
//  Test of @matrix Snippet for C++
// 2023/09/04 by @ShizuriYuki

// #pragma GCC optimize (2)
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;

// 矩阵加法
// mat_a: a * b, mat_b: a * b
template <typename T>
vector<vector<T>> matrixAdd(const vector<vector<T>>& _mat_a, const vector<vector<T>>& _mat_b) {
if (_mat_a.size() != _mat_b.size() || _mat_a[0].size() != _mat_b[0].size()) {
cerr << "[matrixAdd] Size not match: mat_a(" << _mat_a.size() << ", " << _mat_a[0].size()
<< "), mat_b(" << _mat_b.size() << ", " << _mat_b[0].size() << ")" << endl;
throw exception();
}
size_t _a = _mat_a.size(), _b = _mat_a[0].size();
vector<vector<T>> _mat_c(_a, vector<T>(_b, 0));
for (size_t _idx_i = 0; _idx_i < _a; ++_idx_i) {
for (size_t _idx_j = 0; _idx_j < _b; ++_idx_j) {
_mat_c[_idx_i][_idx_j] = _mat_a[_idx_i][_idx_j] + _mat_b[_idx_i][_idx_j];
}
}
return _mat_c;
}

// 矩阵减法
// mat_a: a * b, mat_b: a * b
template <typename T>
vector<vector<T>> matrixSub(const vector<vector<T>>& _mat_a, const vector<vector<T>>& _mat_b) {
if (_mat_a.size() != _mat_b.size() || _mat_a[0].size() != _mat_b[0].size()) {
cerr << "[matrixSub] Size not match: mat_a(" << _mat_a.size() << ", " << _mat_a[0].size()
<< "), mat_b(" << _mat_b.size() << ", " << _mat_b[0].size() << ")" << endl;
throw exception();
}
size_t _a = _mat_a.size(), _b = _mat_a[0].size();
vector<vector<T>> _mat_c(_a, vector<T>(_b, 0));
for (size_t _idx_i = 0; _idx_i < _a; ++_idx_i) {
for (size_t _idx_j = 0; _idx_j < _b; ++_idx_j) {
_mat_c[_idx_i][_idx_j] = _mat_a[_idx_i][_idx_j] - _mat_b[_idx_i][_idx_j];
}
}
return _mat_c;
}

// return: determinant of matrix
template <typename T>
long long matrixDet(const vector<vector<T>>& _mat_a) {
size_t _a = _mat_a.size(), _b = _mat_a[0].size();
if (_a != _b) {
cerr << "[matrixDet] Size not match: (" << _a << ", " << _b << ")" << endl;
throw exception();
}
long long _ans = 0;
if (_a == 1) {
_ans = _mat_a[0][0];
}
else {
for (size_t _idx_i = 0; _idx_i < _a; ++_idx_i) {
vector<vector<T>> _mat_b(_a - 1, vector<T>(_a - 1, 0));
for (size_t _idx_j = 1; _idx_j < _a; ++_idx_j) {
int _idx_l = 0;
for (size_t _idx_k = 0; _idx_k < _a; ++_idx_k) {
if (_idx_k == _idx_i) {
continue;
}
_mat_b[_idx_j - 1][_idx_l++] = _mat_a[_idx_j][_idx_k];
}
}
_ans += _mat_a[0][_idx_i] * matrixDet(_mat_b) * ((_idx_i & 1) ? -1 : 1);
}
}
return _ans;
}

// return: rank of matrix
template <typename T>
int matrixRank(vector<vector<T>> _mat_a) {
size_t _a = _mat_a.size(), _b = _mat_a[0].size();
int _rank = 0;
for (size_t _idx_i = 0; _idx_i < _b; ++_idx_i) {
for (size_t _idx_j = _rank; _idx_j < _a; ++_idx_j) {
if (_mat_a[_idx_j][_idx_i] != 0) {
swap(_mat_a[_idx_j], _mat_a[_rank]);
break;
}
}
if (_mat_a[_rank][_idx_i] == 0) {
continue;
}
for (size_t _idx_j = _rank + 1; _idx_j < _a; ++_idx_j) {
if (_mat_a[_idx_j][_idx_i] == 0) {
continue;
}
T _tmp = _mat_a[_idx_j][_idx_i] / _mat_a[_rank][_idx_i];
for (size_t _idx_k = _idx_i; _idx_k < _b; ++_idx_k) {
_mat_a[_idx_j][_idx_k] -= _mat_a[_rank][_idx_k] * _tmp;
}
}
++_rank;
}
return _rank;
}

// mat_a: a * b, mat_b: b * c
// _mod = 0: 不取模
// return: a * c
// template <typename T>
vector<vector<double>> matrixMul(const vector<vector<double>>& _mat_a, const vector<vector<double>>& _mat_b, double _mod = 0) {
size_t _a = _mat_a.size(), _b = _mat_a[0].size(), _c = _mat_b[0].size();
if (_b != _mat_b.size()) {
cerr << "[matrixMul] Size not match: mat_a(" << _a << ", " << _b
<< "), mat_b(" << _mat_b.size() << ", " << _mat_b[0].size() << ")" << endl;
throw exception();
}
vector<vector<double>> _mat_c(_a, vector<double>(_c, 0));
for (size_t _idx_i = 0; _idx_i < _a; ++_idx_i) {
for (size_t _idx_j = 0; _idx_j < _c; ++_idx_j) {
for (size_t _idx_k = 0; _idx_k < _b; ++_idx_k) {
_mat_c[_idx_i][_idx_j] += _mat_a[_idx_i][_idx_k] * _mat_b[_idx_k][_idx_j];
// 考虑浮点数的情况,就不要用 %=_mod
if (_mod) {
// _mat_c[_idx_i][_idx_j] %= _mod;
}
}
}
}
return _mat_c;
}

// 矩阵快速幂
// 仅适用于整数,如需浮点数请自行修改
// _mod = 0: 不取模
// return: a ^ _hat
vector<vector<double>> matrixFastPow(const vector<vector<double>>& _mat_a, int _hat, int _mod = 0) {
if (_mat_a.size() != _mat_a[0].size()) {
cerr << "[matrixFastPow] Size not match: (" << _mat_a.size() << ", " << _mat_a[0].size() << ")" << endl;
throw exception();
}
size_t _a = _mat_a.size();
vector<vector<double>> _mat_c(_a, vector<double>(_a, 0));
for (size_t _idx_i = 0; _idx_i < _a; ++_idx_i) {
_mat_c[_idx_i][_idx_i] = 1; // init as identity matrix, 1 on diagonal
}
vector<vector<double>> _mat_b = _mat_a;
while (_hat) {
if (_hat & 1) {
_mat_c = matrixMul(_mat_c, _mat_b, _mod);
}
_mat_b = matrixMul(_mat_b, _mat_b, _mod);
_hat >>= 1;
}
return _mat_c;
}

// 矩阵转置
// return: transpose matrix
template <typename T>
vector<vector<T>> matrixTranspose(const vector<vector<T>>& _mat_a) {
size_t _a = _mat_a.size(), _b = _mat_a[0].size();
vector<vector<T>> _mat_c(_b, vector<T>(_a, 0));
for (size_t _idx_i = 0; _idx_i < _a; ++_idx_i) {
for (size_t _idx_j = 0; _idx_j < _b; ++_idx_j) {
_mat_c[_idx_j][_idx_i] = _mat_a[_idx_i][_idx_j];
}
}
return _mat_c;
}

template <typename T>
vector<vector<T>> matrixConcat(const vector<vector<T>>& _mat_a, const vector<vector<T>> _mat_b, int axis = 0) {
size_t _a = _mat_a.size(), _b = _mat_a[0].size();
size_t _c = _mat_b.size(), _d = _mat_b[0].size();
if (axis == 0) {
if (_b != _d) {
cerr << "[matrixConcat] Size not match: mat_a(" << _a << ", " << _b
<< "), mat_b(" << _c << ", " << _d << ")" << endl;
throw exception();
}
vector<vector<T>> _mat_c(_a + _c, vector<T>(_b));
for (size_t _idx_i = 0; _idx_i < _a; ++_idx_i) {
for (size_t _idx_j = 0; _idx_j < _b; ++_idx_j) {
_mat_c[_idx_i][_idx_j] = _mat_a[_idx_i][_idx_j];
}
}
for (size_t _idx_i = 0; _idx_i < _c; ++_idx_i) {
for (size_t _idx_j = 0; _idx_j < _d; ++_idx_j) {
_mat_c[_idx_i + _a][_idx_j] = _mat_b[_idx_i][_idx_j];
}
}
return _mat_c;
}
else if (axis == 1) {
if (_a != _c) {
cerr << "[matrixConcat] Size not match: mat_a(" << _a << ", " << _b
<< "), mat_b(" << _c << ", " << _d << ")" << endl;
throw exception();
}
vector<vector<T>> _mat_c(_a, vector<T>(_b + _d));
for (size_t _idx_i = 0; _idx_i < _a; ++_idx_i) {
for (size_t _idx_j = 0; _idx_j < _b; ++_idx_j) {
_mat_c[_idx_i][_idx_j] = _mat_a[_idx_i][_idx_j];
}
}
for (size_t _idx_i = 0; _idx_i < _c; ++_idx_i) {
for (size_t _idx_j = 0; _idx_j < _d; ++_idx_j) {
_mat_c[_idx_i][_idx_j + _b] = _mat_b[_idx_i][_idx_j];
}
}
return _mat_c;
}
else {
cerr << "[matrixConcat] Invalid axis: " << axis << endl;
throw exception();
}
}

// 高斯消元法求逆矩阵
// 时间复杂度:O(n^3);空间复杂度:O(n^2)
// 适用范围:矩阵的元素为float或double,且矩阵的行列数相等
template <typename T>
vector<vector<T>> matrixInverse_Gauss(vector<vector<T>> mat) {
int n = mat.size();
vector<vector<T>> inv = mat;
vector<vector<T>> aug(n, vector<T>(n));
for (int i = 0; i < n; i++)
aug[i][i] = 1;
for (int i = 0; i < n; i++) {
// 找到第 i 列的最大元素所在的行
int maxRow = i;
for (int j = i + 1; j < n; j++) {
if (abs(inv[j][i]) > abs(inv[maxRow][i])) {
maxRow = j;
}
}
// 交换第 i 行和第 maxRow 行
for (int j = 0; j < n; j++) {
swap(inv[i][j], inv[maxRow][j]);
swap(aug[i][j], aug[maxRow][j]);
}
// 除以主元
T temp = inv[i][i];
for (int j = 0; j < n; j++) {
inv[i][j] /= temp;
aug[i][j] /= temp;
}
// 消元
for (int j = 0; j < n; j++) {
if (j != i) {
temp = inv[j][i];
for (int k = 0; k < n; k++) {
inv[j][k] -= inv[i][k] * temp;
aug[j][k] -= aug[i][k] * temp;
}
}
}
}
return aug;
}

int main() {
ios::sync_with_stdio(false);
cout.tie(0);
cin.tie(0);

// vector<vector<double>> mat_a(3, vector<double>(3));
// vector<vector<double>> mat_b(3, vector<double>(3));
// // 输入矩阵
// cout << "Input mat_a:" << endl;
// for (int i = 0; i < 3; i++) {
// for (int j = 0; j < 3; ++j) {
// cin >> mat_a[i][j];
// }
// }
// cout << "Input mat_b:" << endl;
// for (int i = 0; i < 3; i++) {
// for (int j = 0; j < 3; ++j) {
// cin >> mat_b[i][j];
// }
// }

vector<vector<double>> mat_a = {
{2, 0, 0},
{0, 2, 0},
{0, 0, 2}};
vector<vector<double>> mat_b = {
{1, 1, 1},
{0, 1, 1},
{0, 0, 1}};

// det(mat_a)
cout << "det(mat_a): " << matrixDet(mat_a) << endl;
// rank(mat_a)
cout << "rank(mat_a): " << matrixRank(mat_a) << endl;
// det(mat_b)
cout << "det(mat_b): " << matrixDet(mat_b) << endl;
// rank(mat_b)
cout << "rank(mat_b): " << matrixRank(mat_b) << endl;

// 求和
vector<vector<double>> mat_c = matrixAdd(mat_a, mat_b);
// 输出矩阵
cout << "mat_a + mat_b -> mat_c:" << endl;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; ++j) {
cout << mat_c[i][j] << " ";
}
cout << endl;
}

// 求 c 的逆
mat_c = matrixInverse_Gauss(mat_c);
// 输出矩阵
cout << "mat_c inverse -> mat_c:" << endl;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; ++j) {
cout << mat_c[i][j] << " ";
}
cout << endl;
}

// a * b
mat_c = matrixMul(mat_a, mat_b);
// 输出矩阵
cout << "mat_a * mat_b -> mat_c:" << endl;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; ++j) {
cout << mat_c[i][j] << " ";
}
cout << endl;
}

// a ^ 3
mat_c = matrixFastPow(mat_a, 3);
// 输出矩阵
cout << "mat_a ^ 3 -> mat_c:" << endl;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; ++j) {
cout << mat_c[i][j] << " ";
}
cout << endl;
}

// a 转置
mat_c = matrixTranspose(mat_a);
// 输出矩阵
cout << "mat_a transpose -> mat_c:" << endl;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; ++j) {
cout << mat_c[i][j] << " ";
}
cout << endl;
}

// a 拼接 b 在 0 轴
mat_c = matrixConcat(mat_a, mat_b, 0);
// 输出矩阵
cout << "mat_a concat mat_b at 0 -> mat_c:" << endl;
for (int i = 0; i < 6; i++) {
for (int j = 0; j < 3; ++j) {
cout << mat_c[i][j] << " ";
}
cout << endl;
}

// a 拼接 b 在 1 轴
mat_c = matrixConcat(mat_a, mat_b, 1);
// 输出矩阵
cout << "mat_a concat mat_b at 1 -> mat_c:" << endl;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 6; ++j) {
cout << mat_c[i][j] << " ";
}
cout << endl;
}

// c 转置
mat_c = matrixTranspose(mat_c);
// 输出矩阵
cout << "mat_c transpose -> mat_c:" << endl;
for (int i = 0; i < 6; i++) {
for (int j = 0; j < 3; ++j) {
cout << mat_c[i][j] << " ";
}
cout << endl;
}

return 0;
}

输出:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
det(mat_a): 8
rank(mat_a): 3
det(mat_b): 1
rank(mat_b): 3
mat_a + mat_b -> mat_c:
3 1 1
0 3 1
0 0 3
mat_c inverse -> mat_c:
0.333333 -0.111111 -0.0740741
0 0.333333 -0.111111
0 0 0.333333
mat_a * mat_b -> mat_c:
2 2 2
0 2 2
0 0 2
mat_a ^ 3 -> mat_c:
8 0 0
0 8 0
0 0 8
mat_a transpose -> mat_c:
2 0 0
0 2 0
0 0 2
mat_a concat mat_b at 0 -> mat_c:
2 0 0
0 2 0
0 0 2
1 1 1
0 1 1
0 0 1
mat_a concat mat_b at 1 -> mat_c:
2 0 0 1 1 1
0 2 0 0 1 1
0 0 2 0 0 1
mat_c transpose -> mat_c:
2 0 0
0 2 0
0 0 2
1 0 0
1 1 0
1 1 1

【C++】二维矩阵运算代码
https://qalxry.github.io/2023/09/04/【C++】二维矩阵运算/
作者
しずり雪
发布于
2023年9月4日
更新于
2023年9月4日
许可协议